Algorithm for the Bisection Method: Given a continuous function f(x)
- Find points a and b such that a < b and f(a) * f(b) < 0.
- Take the interval [a, b] and find its midpoint x1.
- If f(x1) = 0 then x1 is an exact root, else if f(x1) * f(b) < 0 then let a = x1, else if f(a) * f(x1) < 0 then let b = x1.
- Repeat steps 2 & 3 until f(xi) = 0 or |f(xi)| <= DOA, where DOA stands for degree of accuracy.
Matlab Program For Bisection Method :
% Bisection Method
clear all
close all
clc
% Change here for different functions
f=@(x) 3*x+sin(x)-exp(x)
% Change lower limit ‘a’ and upper limit ‘b’
a=0; b=1;
for i=1:1:100
x=(a+b)/2;
if f(x)<0
a=x;
else
b=x;
end
end
sol=x;
fprintf(‘Approximate Root is %.15f’,sol)
a=0;b=1;
er(10)=0;
for i=1:1:10
x1=(a+b)/2;
if f(x1)<0
a=x1;
else
b=x1;
end
er(i)=x1-sol;
end
plot(er)
xlabel(‘Number of iterations’)
ylabel(‘Error’)
title(‘Error Vs. Number of iterations’)
f = @(x)3*x+sin(x)-exp(x)
Approximate Root is 0.360421702960324
Clik here to view.

graph of Bisection Method
tags : Algorithm for bisection method flowchart for bisection method matlab program for bisection method matlab program for bisection method algorithm flowchart
Image may be NSFW.
Clik here to view.

Clik here to view.
